Current Issue

Nov. 16, 2011

Vol. 112, No. 4

Features

Robo Shop

Princeton students are designing machines that seem to have minds of their own

By Mark F. Bernstein ’83
Published in the November 16, 2011, issue


Professor Robert Stengel *65 *68
Ricardo Barros
Professor Robert Stengel *65 *68

Maybe we have George Lucas to blame — Lucas and all the sci-fi movie directors, ­novelists, and comic-book writers over the decades who filled us with ideas of what a robot ought to look like. Imagine a robot and you are likely to conjure up a metallic humanoid with an English accent like C-3PO or a rolling tub with ­flashing lights like R2-D2. Throw in a pair of awkwardly pumping arms like the robot in the old TV series Lost in Space: “Danger, Will Robinson! Danger!” 

Truth may be more interesting than fiction, but it doesn’t always look the way you would expect. To see what a real robot looks like, go down to the Engineering Quadrangle and see what they are working on in Professor Robert Stengel’s class, “Robotics and Intelligent Systems.” The class is at the center of the Program in Robotics and Intelligent Design Systems, a certificate program since 1998. Stengel *65 *68 is its first and only director.

Robots, he explains, can come in all shapes and sizes. They can be stationary or mobile, as large as an airplane or small enough to fit in the palm of your hand. And they don’t have to have a tinny, mechanical voice. 

What differentiates a robot from other work-doing machines — a sewing machine, for example — is the element of autonomous control. Not only does a robot do things on its own, it contains software that enables it to sense the environment around it and react to what it senses. Robotics combines the design of structural elements with the design of software that enables the machine to interact with the world around it.

Although robotics clubs and competitions have become a high-school staple, the Princeton robotics program is anything but a science-fair project. It is not a competition at
all, although some students have entered their robots in competitions, and there are no predetermined limitations on their budgets or the materials they can use. They are limited only by their imaginations.

Stengel’s course is one of more than a dozen in the robotics program, which spans several departments, including chemical and electrical engineering, civil and environmental engineering, computer science, electric engineering, and mechanical and aerospace engineering. It is open to juniors and seniors who meet several prerequisites for admission: successful completion of lower-level mathematics courses, at least one computer-science course, and either the A.B. science and technology requirement or the B.S.E. freshman science requirement. Although the large majority of students in the program are engineering majors, there have been a few science majors and, for the first time this year, a humanities major. 

Students must take three core courses: a lab, a course on control systems, and a course on cognition, language, and decision-making. They also must take three electives, choosing from a roster that includes engineering courses as well as classes in linguistics, psychology, and philosophy. Those non-science courses both broaden the students intellectually and push engineers into new areas of research, Stengel says. Courses in linguistics, for example, are important because they often examine how the brain receives and responds to language — processes scientists try to replicate through artificial-intelligence programs. As Stengel says, “The interactions between people and machines are very interesting to us.” 

The highlight of the program, faculty and students agree, is senior independent work. The robotics program website contains several pages of suggested research projects proposed by faculty members. Professor Jeremy Kasdin, for example, has proposed several projects related to his work for NASA’s planet-finding program. Professor Philip Holmes seeks students to assist with research on the mechanics of the way insects move, in order to design legged robots. Professor Wole Soboyejo proposes that students design a device that can pump water in remote villages, asking: “Why not design and make something that could make the world a better place?”

Stengel has proposed a number of research topics of his own, some of which are part of what he has called the Tiger Challenge (see the list, page 32). They challenge students to design a robot that can perform one of several unusual tasks — from kicking a 30-yard field goal to doing the Michael Jackson moon walk to navigating from the E-Quad to one of the eating clubs. All of them are theoretically doable but some, Stengel acknowledges, “are more preposterous than others.” So far, no student has taken Stengel up on any of the challenges on the list.

 
Post Comments
Comments
2 Responses to Robo Shop: Princeton students are designing machines that seem to have minds of their own

James R. Schueler '66 Says:

2011-11-14 16:52:17

Considering the present economic situation, what we need now is a robot that will buy a house and a car.

Bruce Deitrick Price '63 Says:

2011-11-16 09:21:13

Okay, this is a little awkward. The work is wonderful; and all these people are much smarter than I am. But I have to tell you this: The problem with all articles about robots (besides loose semantics) is that they paint an unrealistic picture of the AI challenge. Everything is moving much slower than once predicted because WE are so much more complex than the experts assumed. For a sobering assessment, Google my "17: Understanding Robots." Bruce Deitrick Price
Tell us what you think about
Robo Shop: Princeton students are designing machines that seem to have minds of their own
Enter the word as it appears in the picture below
Send
By submitting a comment, you agree to PAW's comment posting policy.
CURRENT ISSUE: Nov. 16, 2011
Web Exclusives
VIDEO
Mohammad Javed ’11’s manta bot
VIDEO
Phobetor robot delivers a fruitcake
Related stories
Robo Shop:
Robotic guitar tuner
Robo Shop:
The manta bot
Robo Shop:
Submersible arm